Dmaths 7.1 pour LibO ou AOO mode d'emploi

La <u>licence</u> se trouve à la dernière page. Conseil : imprimez ce mode d'emploi. Vous avez à votre disposition <u>un forum</u>

Cette version de Dmaths fonctionne sous LibreOffice ≥ 7.6 ou OpenOffice ≥ 4.1

Vous pouvez afficher ou cacher la barre d'icônes de Dmaths en suivant :

<u>Affichage > Barres d'outils > Dmaths-Barre</u>, ou encore avec l'icône D.

Vous pouvez régler les options de Dmaths en suivant Dmaths > Choisir les options de Dmaths (icône **()**) ou en utilisant le raccourci clavier [Ctrl+Maj+O/Alt+F8] (voir <u>quelques exemples</u>). Vous pouvez cacher une ou plusieurs icônes en cliquant sur « afficher/masquer les icônes de la barre » dans le menu des options.

Les raccourcis clavier

Vous pouvez désactiver ou activer la virgule comme séparateur décimal :

Linux ou Windows <u>O</u>utils > Opt<u>i</u>ons Mac OS X LibreOffice > Préférences

puis Paramètres linguistiques > *Langues* > *Touche séparateur de décimales*. *Rapport de bug*

Vous pouvez envoyer votre configuration ou un rapport de bug : [*Ctrl+Alt+R/Alt+F7*] Vous avez plusieurs possibilités : les macros rapides, les boîtes de dialogue, le mode texte, les macros bleues, le traceur de courbes et celui de figures géométriques.

Les macros rapides

Les caractères barrés

Écrire des formules en couleur

Faire du calcul formel en utilisant Sympy ou Xcas Fonctions personnelles définies dans le tableur

Les boîtes de dialogues intuitives

Les autotextes

Les macros bleues

Tracer des courbes

Module statistiques et diagrammes en boîtes

Tableaux de variations, de signes et de valeurs

Construire une figure géométrique

Utiliser la Galerie

Comment modifier un graphique

Les raccourcis clavier <u>Retour accueil</u>

macOSX : Pour les raccourcis qui utilisent des touches de fonctions (F1, F2...), il faut aussi appuyer sur la touche fn. Pour simplifier : régler l'utilisation du clavier 1. Sélectionnez Préférences Système dans le menu Pomme.

- 2. Cliquez sur Clavier.
- Cliquez sur l'onglet Clavier si celui-ci n'est pas sélectionné. 3.
- Sélectionnez « Utiliser les touches F1, F2 ..., comme des touches de fonction standard ». 4.

Module	Macro	Icône	Windows-Linux	MacOs
Impress	InsereObjetWriter	D	F10	F10
Writer	LanceCreationTableau		Ctrl+T	Ctrl+T
	MetenFormule	M	F10/F8	F10/F8
	MetEnVecteur	đ	Ctrl+Maj+V	Ctrl+Maj+V
	ChangeOptionMajuscule	M	Ctrl+Maj+W	Ctrl+Maj+W
	MetEnMesureAlgebrique	AB	Ctrl+Maj+E	Alt+F3
	BasculeCoordonLigneColonne		Ctrl+Maj+C	Ctrl+Maj+C
	MetEnAngle	Â	Ctrl+Maj+A	₩+Maj+A
	MetenArc		Ctrl+Alt+A	Alt+F2
	MetEnArcOriente	_	Ctrl+Alt+O	Maj+Alt+F2
	MetEnLimite	im ≈→	Ctrl+Maj+L	Ctrl+Maj+L
	MetEnIntegrale	∫d≠x.	Ctrl+Maj+I	Ctrl+Maj+I
	MetEnSomme	Σ	Ctrl+Maj+S	Ctrl+Maj+S
	MetEnRacine	y	Ctrl+Maj+R	Ctrl+Maj+R
	MetEnSysteme	C :	Ctrl+Maj+X	Ctrl+Maj+X
	MetEnMatrice	(::)	Ctrl+Maj+M	Ctrl+Maj+M
	MetEntreAccolades	<pre>{}</pre>	F9/F4	F9/F4
	MetEntreParenthèses	()	Maj+F9	Maj+F9
	MetEntreCrochets	()	Ctrl+Maj+F9	Ctrl+Maj+F9
	MetEntreAccoladesVariables		Alt+F9	Alt+F9
	MetEnPartieEntière		Ctrl+Alt+I	₩+Alt+I
	ImporteDepuisLatex		Ctrl+Alt+V	₩+Alt+V
	ChargeDialogFormel	X	Alt+X	Ctrl+X
	RepeteCalculFormel		Alt+V	Ctrl+R
	SimpleCalculFormel		Alt+C	Ctrl+F10
	Editeur de fonctions et console	64 9	Alt+W	Alt+W
	EcritAutotexte		F3	F3
	Surligne		Ctrl+Maj+F3	Ctrl+Maj+F3
	MetEnItalique	1	Maj+F3	Maj+F3
	MetEnCursive	${\mathcal C}$	Maj+F4	Maj+F4
	MetENTRE	()	Ctrl+Maj+Z	Ctrl+Maj+Z
	ChoixOptionsDmaths	Ő	Ctrl+Maj+O	Ctrl+Maj+O
	Choix des couleurs		Ctrl+Maj+Y	Ctrl+Maj+Y
	Controle Parental		Ctrl+Alt+P	Ctrl+Maj+P
	Reinitialise Controle Parental		Ctrl+Alt+N	Ctrl+Maj+N

Exemples illustrant les options Produit de fractions et Formules espacées

Produit de fractions	entrée + F10 (ou F8)	résultat
cochée	1/2*1/3*1/4=1/24	1,1,1_1
non cochée	${1/2}*{1/3}*{1/4}={1/24}$	$\frac{1}{2}^{3}\frac{1}{3}^{4}\frac{1}{24}$
cochée	{5*14}/35*{10^-8*10^13}/10^-5	$5 \times 14 10^{-8} \times 10^{13}$
non cochée	{{5*14}/35}*{{10^-8*10^13}/10^-5}	35^{-5} 10^{-5}
non cochée	{{ab_1}/{ab_2}}*{{a_1b}/{a_2b}}	$\frac{ab_1}{ab_2} \times \frac{a_1b}{a_2b}$
		Retour accueil
Formules espacées	entrée + F10 (ou F8)	résultat
cochée		$x^{2} + 5 + x^{2} + 2$
	$(v \land 2 + E)/(v \land 2) + (v \land 2 + 2)/(v + 2)$	$\frac{1}{x-3} + \frac{1}{x+7}$
non cochée	(x',2+3)/(x-3)+(x',2+2)/(x+7)	$\frac{x^2+5}{x-3}+\frac{x^2+2}{x+7}$

Les macros rapides

Elles permettent d'obtenir en un clic de souris ou à l'aide d'un raccourci clavier n'importe quelle formule.

<u>A savoir:</u>

1) Le séparateur pour les fractions est: **{ }** obtenu en cliquant sur **{ }** ou avec F9 (ou F4) .

2) Le caractère **§** appellera la macro Formulegraphique2 **F** en cours d'exécution.

3) Les parties de formule comprises entre deux & seront inchangées.

4) Les parties comprises entre deux \$ seront traitées comme avec MetenFormule M

5) Le séparateur pour mesure algébrique et norme est !. Une option permet d'utiliser ! pour écrire les factorielles.

6) La macro appelée utilisera soit le texte sélectionné ou en l'absence de sélection la chaîne de caractères où se trouve le curseur.

7) Les boutons : 🔲 📝 🕂 🗕 lancent des macros qui permettent d'encadrer, de modifier,

d'augmenter ou de diminuer la taille, selon le cas, de la formule sélectionnée, des formules incluses dans la sélection ou dans tout le document.

MetentreParentheses	MetentreAccolades	MetenRa	cineBleue
() ou () puis ()	Ð	() puis ✓	rc puis F3
Maj+F9	F9 (ou F4)	Ctrl+Maj+R nroot{}{}	sqrt{}

En cas de problème utilisez les Boîtes de Dialogues : (), {: , [::], F ou **F**.

- 1) <u>MetenFormule</u>
- 2) <u>MetenVecteur</u>
- 3) <u>MetenMesureAlgébrique</u>
- 4) <u>MetenAngle ou MetEnArc ou MetEnArcOriente</u>
- 5) <u>MetenLimite</u>
- 6) <u>MetenIntegrale</u>
- 7) <u>MetenSomme</u>
- 8) <u>MetenRacine</u>
- 9) <u>MetenSysteme</u>
- 10) MetenMatrice
- 11) <u>Quelques exemples</u>
- Le tableau récapitulatif

1) <u>MetenFormule :</u>

Nom	Icône	Raccourci clavier	Exemple: saisie	Résultat
MetenFormule	м	F10 (ou F8)	${2x+1}/{4x+1}-3$	$\frac{2x+1}{4x+1} - 3$

Quelques exemples :

Tapez puis cliquez sur M ou tapez F10 (ou F8)	Vous aurez :
$f(x)=1+1/x-1/{x^2+1}$	
{} s'obtient avec {} ou F9 (ou F4)	$f(x) = 1 + \frac{1}{x} - \frac{1}{x^2 + 1}$
$f(x)=sqrt{x^2+1/{x^2+1}}$ sqrt s'obtient avec rc puis F3	$f(x) = \sqrt{x^2 + \frac{1}{x^2 + 1}}$
f(x)=x^2+1 tapez F10 (ou F8) puis +1/x puis F10 (ou F8).	$f(x) = x^2 + 1 + \frac{1}{x}$
Les formules se concatènent.	X
1/2+&1/3&=5/6	$1_{\pm 1/2} = 5$
la partie entre deux & est inchangée	$\frac{1}{2}$ + 1/3 - $\frac{1}{6}$
${x+1}/{(x+2)(x-5)}$	x + 1
(x+1)/((x+2)(x-5))	(x+2)(x-5)
A_n^p	A_n^p
$S=\setminus\{1/2\}$	$s - \left(\frac{1}{2}\right)$
\{\} s'obtient en tapant [Alt+F9]	$3 = \left\{\frac{1}{2}\right\}$
S=Ø	$S - \alpha$
emptyset s'obtient avec ev puis F3	5-20
S=[-{1/2};+inf[$S = \left[-\frac{1}{2}; +\infty \right[$
${2x+1}/{x-1} \le 35$	$\frac{2x+1}{x-1} \leq 35$
f(α)=1/α (α s'obtient en tapant al puis F3)	$f(\alpha) = \frac{1}{2}$
f(al)=1/al ou de=al+2be puis F10 si option	
caractères grecs reconnus activée	$\delta = \alpha + 2\beta$
f(x)=(2x+1)(2x+1/2)	$f(x) = (2x+1)\left(2x+\frac{1}{2}\right)$
$m(x)=f(x)/{g(x)}$	$m(x) = \frac{f(x)}{g(x)}$

2) MetenVecteur :

Nom	Icône	Raccourci clavier	Exemple: saisie	Résultat
MetenVecteur	đ	Ctrl+Maj+V	AB	ĀB
			u	ū

Par défaut le majuscules sont en caractères romans (droits). Quelques exemples :

Tapez puis cliquez sur 🔂	Vous aurez:
OG=-{1/3}(OA+OB+OC)	OG=-{1/3}(OA+OB+OC)
MA+2MB puis à nouveau =3MG	$\overline{MA} + 2\overline{MB} - 3\overline{MC}$
Les formules se concatènent.	
OC=OA∧OB	$\overrightarrow{OC} = \overrightarrow{OA} \land \overrightarrow{OB}$
$u \wedge (v \wedge w)$	$\vec{u} \wedge (\vec{v} \wedge \vec{w})$
AB(-1;1/2)+BC(1/2;2)	$\overrightarrow{AB}\left(-1;\frac{1}{2}\right)+\overrightarrow{BC}\left(\frac{1}{2};2\right)$
AB(-1,0.5)+BC(0.5,2) avec option ., activée	$\overrightarrow{AB}(-1,0.5)+\overrightarrow{BC}(0.5,2)$
et sans flèche activée	AB(-1,0.5)+BC(0.5,2)
2u(-{1/2};5) en mode coordonnées verticales [Ctrl+Maj+C]	$2\vec{u} \begin{pmatrix} -\frac{1}{2} \\ 5 \end{pmatrix}$
AB*AC=AB*AH	$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$
aMA+bMB=(a+b)MG	
Les minuscules sont reconnues comme scalaires (voir les options de dmaths [Ctrl+Maj+O]	$a \overline{MA} + b \overline{MB} = (a+b) \overline{MG}$
AB(-1;5) \$=sqrt{26}\$ s'obtient avec no+F3,	$\ \overline{AP}(-1,\varepsilon)\ = \sqrt{26}$
sqrt avec rc puis F3	
Attention cette macro supporte mal les racines carrées. En cas de difficulté, utiliser la macro graphique ou encore:	$\overrightarrow{AB}(\frac{\sqrt{2}}{2};5)$ $\overrightarrow{AB}(\frac{\sqrt{2}}{2})$
AB(\$sqrt{2}/2\$;5)	
Le raccourci clavier [Ctrl+Maj+C] permet d'échanger les modes coordonnées horizontales et verticales.	$\overline{AB}(1;2)$
AB(1;2) puis [Ctrl+Maj+V] donne	$\left \frac{1}{n!} \left(\frac{1}{2} \right) \right $
puis [Ctrl+Maj+C] suivi de	
u(1/2;3) puis [Ctrl+Maj+V] donne	· · · /
Les lettres peuvent être considérées comme des	Avec l'option activée : $a\vec{u}+b\vec{v}=\vec{w}$
scalaires (voir [Ctrl+Maj+O]	Sans l'option activée : $\vec{u} + \vec{v} = \vec{w}$
En ajoutant $\alpha\beta$ dans la liste des scalaires	$\alpha u + \beta v = w$ donnera $\alpha \vec{u} + \beta \vec{v} = \vec{w}$

<u>3) MetenMesureAlgebrique :</u>

Nom	Icône	Raccourci clavier	Exemple: saisie	Résultat
MetenMesure	AB	Ctrl+Maj+E/Alt+F3	AB	\overline{AB}
Algebrique		Ctrl+Maj+F3	AB	ĀB
				$\overline{\overline{AB}}$

Quelques exemples :

Tapez puis cliquez sur 🛺	Vous aurez:
OG=-1/3(OA+OB+OC)	$\overline{\text{OG}} = \frac{-1}{3} (\overline{\text{OA}} + \overline{\text{OB}} + \overline{\text{OC}})$
AB(-1;1/2)+BC(1/2;2)=AC	$\overline{\mathrm{AB}}\left(-1;\frac{1}{2}\right) + \overline{\mathrm{BC}}\left(\frac{1}{2};2\right) = \overline{\mathrm{AC}}$
\$sqrt{2}\$AB AB(1;2)	$\sqrt{2}\overline{AB}$ $\overline{AB}(1;2)$
AB(1;2) on sélectionne AB puis Ctrl+Maj+F3	<u>AB</u> (1;2)
ou AB(1;2) puis F10 (ou F8) donne	<u>AB</u> (1;2)

4) MetenAngle :

Nom	Icône	Raccourci clavier	Exemple: saisie	Résultat
			ABC	ÂBC
MetenAngle	Â	Ctrl+Maj+A	ABC (u;1/2v)	$\widehat{(\vec{u};\frac{1}{2}\vec{v})}$
MetEnArc		Ctrl+Maj+A	AB	ÂB
MetEnArcOriente		Ctrl+Maj+F	AB	ÂB

Quelques exemples:

Tapez puis cliquez sur 🁔	Vous aurez:
A+2B+3/2C=140°	$\widehat{A} + 2\widehat{B} + \frac{3}{2}\widehat{C} = 140^{\circ}$
(1/2u;-3/4v)+(v;w)=(u;w)+pi	$\left(\overline{\frac{1}{2}\vec{u}; -\frac{3}{4}\vec{v}}\right) + \left(\widehat{\vec{v}; \vec{w}}\right) = \left(\widehat{\vec{u}; \vec{w}}\right) + \pi$

5) MetenLimite :

Le caractère # permet d'avoir des écritures superposées.

Nom	Icône	Raccourci clavier	Exemple: saisie	Résultat
			1/2;x/{x+1}	$\lim_{x \to \frac{1}{2}} \frac{x}{x+1}$
			t;+inf;f(t)	$\lim_{t\to+\infty}f(t)$
MetenLimite	lim x→	Ctrl+Maj+L	0#x>0;1/x	$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x}$
			t;2#t<2;x^2	$\lim_{\substack{t \to 2\\ t < 2}} x^2$
			t;0^+;1/t	$\lim_{t \to 0^+} \frac{1}{t} = +\infty$

Quelques exemples :

Tapez puis cliquez sur 🛄	Vous aurez:
-{1/2}^+;(x/{x+1/2}) rem: 0^+ pour 0 ⁺	$\lim_{x \to -\frac{1}{2}^{+}} \left(\frac{x}{x + \frac{1}{2}} \right)$
0^+;1/x puis Ctrl+Maj+L puis =+inf puis F10 (ou F8)	$\lim_{n \to \infty} \frac{1}{n} = +\infty$
Les formules se concatènent	$x \rightarrow 0^+ X$
-1;f(x)=25+1/e\$	
rem: le signe \$ permet de traiter le reste de la formule .	$\lim_{x \to \infty} f(x) = 25 + \frac{1}{2}$
ou encore: -1;f(x) puis 🄽 =25+1/e	x→-1 e
puis F10 (ou F8).	
al;f(x) puis Ctrl+Maj+L puis f(al) puis F10	$\lim_{x \to \alpha} f(x) = f(\alpha)$

<u>6) MetenIntegrale :</u>

Nom	Icône	Raccourci clavier	Exemple: saisie	Résultat
MetenIntegrale			mode1: f(x)	$\int f(x) \mathrm{d} x$
	fár		mode2: 1/t;t	$\int \frac{1}{t} \mathrm{d} t$
	<u> </u>	CultiMaj+1	mode3: -{1/2};al;x/{x+1}	$\int_{-\frac{1}{2}}^{\alpha} \frac{x}{x+1} \mathrm{d}x$
			mode4: 1;nroot{}{2};f(t);t	$\int_{1}^{\sqrt{2}} f(t) \mathrm{d} t$

Exemples :

Tapez puis cliquez sur 률	Vous aurez:
1;x;1/t;t\$=ln(x)\$	$\int 1$
ou encore 1;x;1/t;t puis der puis =ln(x)	$\int_{1}^{1} \frac{-d}{t} t = \ln(x)$
puis F10 (ou F8)	
1;x;1/t;t puis Ctrl+Maj+I puis =ln(x) puis F10 (ou F8)	$\int_{1}^{x} \frac{1}{t} dt = \ln(x)$
Les formules se concatènent.	-
Mais encore plus simple ln(x)=1;x;1/t;t	$\ln(x) = \int_{1}^{x} \frac{1}{t} dt$

7) MetenSomme :

Nom	Icône	Raccourci clavier	Exemple: saisie	Résultat
MetenSomme ∑			mode1: k^2	$\sum k^2$
	Ctrl+Maj+S/Alt+F2	mode2: 0;+inf;(k^2+k)	$\sum_{0}^{+\infty} (k^2 + k)$	
			mode3: k;0;n;k^2	$\sum_{k=0}^{k=n} k^2$

Exemple.	
Tapez puis cliquez sur ∑	Vous aurez:
$k;1;n;k\$={n(n+1)}/2\$$	k=n $n(n+1)$
rem: le signe \$ permet de traiter le reste de la formule .	$\sum_{k=1}^{\infty} k = \frac{n(n+1)}{2}$
Mais encore : ${n(n+1)}/{2=1};n;k$	$\frac{n(n+1)}{2} = \sum_{1}^{n} k$

8) MetenRacine :

Nom	Icône	Raccourci clavier	Exemple: saisie	Résultat
MetenRacine	·['	Ctrl+Maj+R	5	$\sqrt{5}$
	19		3;27	∛27

Exemple :

Tapez puis cliquez sur Ţ	Vous aurez:
3^2+4^2\$=5\$	$\sqrt{3^2 + 4^2} = 5$
4 puis Ctrl+Maj+R puis =2 puis F10 (ou F8)	$\sqrt{4}=2$

<u>9) MetenSysteme</u>: Attention, il existe deux modes: systèmes alignés ou non, que l'on sélectionne avec le menu Dmaths > Options (icône **O**) ou le raccourci clavier Ctrl+Maj+O

Nom	Icône	Raccourci clavier	Exemple: saisie	Résultat
			Option systèmes non alignés x+2y=5;;x-1/2y=-3/4	$\begin{cases} x+2y=5\\ x-\frac{1}{2}y=-\frac{3}{4} \end{cases}$
MetenSysteme	<u>{</u> :	Ctrl+Maj+X	Option systèmes non alignés (écrit une matrice) x;+;2y;=;5;;x;-;1/2y;=;-3/4	$\begin{cases} x + 2y = 5 \\ x - \frac{1}{2}y = -\frac{3}{4} \end{cases}$

Remarque: La macro graphique correspondante **{**: permet d'obtenir le même résultat de façon intuitive.

Attention : En mode aligné les blancs doivent être remplis par le caractère ` (Alt GR+`)

Exemple 2x;`;`;=;10;;x;+;y;=;3 pour obtenir: $\begin{cases} 2x &= 10 \\ x &+ y &= 3 \end{cases}$.

<u>10) MetenMatrice :</u>

Nom	Icôn e	Raccourci clavier	Exemple: saisie	Résultat
MetenMatrice	<mark>(::)</mark>	Ctrl+Maj+M/Alt+F5	-1;5;;5/2;4 A=0;-1;;-1;0^^2	$\begin{pmatrix} -1 & 5\\ \frac{5}{2} & 4 \end{pmatrix}$ $A = \begin{pmatrix} 0 & -1\\ -1 & 0 \end{pmatrix}^2$
		Crtl+Maj+D	-1;4;;5/2;3	$\begin{vmatrix} -1 & 4 \\ \frac{5}{2} & 3 \end{vmatrix}$
MetEnDeterminant		Citi + Maj + D	d=-1;4;;5/2;3	$d = \begin{vmatrix} -1 & 4 \\ \frac{5}{2} & 3 \end{vmatrix}$
		Alt+C (Ctrl+F10)	d	d = -13

Remarque: La macro graphique correspondante 🔛 contient davantage d'options.

<u>11)</u> Quelques exemples:

<u>exemple 1</u>

Tapez: f(x)=6x+8 puis cliquez sur **M** vous aurez une boîte de dialogue vous permettant d'insérer une mesure algébrique.

 $f(x) = 6x + \overline{AB}$

<u>exemple 2</u>

Pour écrire un système avec les colonnes alignées utilisez la macro MatriceGraphique 🔛,

et choisissez l'avant dernière option :

$$\begin{vmatrix} 2x + \frac{1}{2}y - \sqrt{2} \\ -\frac{1}{2}x + y = 7 \end{vmatrix}$$

 $2x + \frac{1}{2}x - \sqrt{2}$

<u>exemple 3</u>

(gom[F3] A; gom[F3] B)=pi/6 sélectionné puis Ctrl+Maj+A donnera: $(\overline{\Omega A}; \overline{\Omega B}) = \frac{\pi}{6}$

qu'on peut obtenir aussi avec : (gom[F3] A; gom[F3] B)=pi/6 puis Ctrl+Maj+A (sans avoir à sélectionner).

<u>exemple 4</u>

gom[F3] _ 1 gom[F3] _2 + gom[F3] gga[F3] = 15 u puis Ctrl+Maj+V donnera:

 $\overline{\Omega_1 \Omega_2} + \overline{\Omega \Gamma} = 15 \vec{u}$

ou gom_1gom_2+gomgga=15u puis Ctrl+Maj+V donnera $\overline{\Omega_1 \Omega_2} + \overline{\Omega \Gamma} = 15 \vec{u}$

<u>exemple 5</u>

Cas particulier IM, IN, RE, LN Il s'agit de mots clés. Tapez ""IM"" pour avoir après F10 : 3

Tableau récapitulatif:

Nom	Icône			Raccourci clavier	
MetenFormule	M	f(x)=1/x	$f(x) = \frac{1}{x}$	F10 (ou F8)	
MetenVecteur	đ	AB	ĀB	Ctrl+Maj+V	
MetenMesureA	lgebrique 🔼	AB	ĀB	Ctrl+Maj+E/Alt+F3	
		ABC	ÂBC		
MetenAngle 痛		(u;1/2v)	$\widehat{(\vec{u};\frac{1}{2}\vec{v})}$	Ctrl+Maj+A	
MetenLimite 🔱	m.	1/2;{x+1}/x	$\lim_{x \to \frac{1}{2}} \frac{x+1}{x}$	Ctrl+Maj+L	
		t;+inf;(t^2+1)	$\lim_{t \to +\infty} \left(t^2 + 1 \right)$		
		f(x)	$\int f(x) dx$		
		1/t;t	$\int \frac{1}{t} dt$		
MetenIntegrale		-{1/2};3;x/{x+1}	$\int_{-\frac{1}{2}}^{3} \frac{x}{x+1} dx$	Ctrl+Maj+I	
		1;x;1/t;t	$\int_{1}^{x} \frac{1}{t} dt$		
MetenRacine	y	3;5	∛5	Ctrl+Maj+R	
		k^2	$\sum k^2$		
MetenSomme 🏅		0;+inf;(k^2+k)	$\sum_{0}^{+\infty} (k^2 + k)$	Ctrl+Maj+S/Alt+F2	
		k;0;n;k^2	$\sum_{k=0}^{k=n} k^2$		
MetenSystème 🚺		x+y=1;;x-y=2	$\begin{cases} x+y=1 \end{cases}$		
Mode non aligné		x+y=1;;x-y<=452	$\left[x-y=2\right]$	Ctrl+Maj+X	
Les équations ou inéquations sont séparées par ;			$\begin{array}{c} x+y=1\\ x-y \leqslant 452 \end{array}$		
MetenMatrice (::)		1;2;3;;4;5;6	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$		
Les coefficients sont séparés par ;			\4 5 6/	Ctrl+Maj+M/ Alt+F5	
Les lignes par ;;					

Les caractères barrés ou surlignés

Pour écrire des caractères barrés, le code dans le module Math est overstrike $\{\}$ que l'on obtient avec le raccourci clavier ba + F3

Voici un exemple :

18/4={overstrike{2}*9}/{overstrike{2}*2} donne $\frac{18}{4} = \frac{2 \times 9}{2 \times 2}$

Pour écrire des caractères surlignés, le code dans le module Math est overline{} que l'on obtient avec le raccourci clavier ov + F3

Voici un exemple :

1220 en base 10 s'écrit 1220.

Écrire des formules en couleur

Vous pouvez choisir toutes les couleurs à partir de LO 7 ou une couleur parmi 15 pour les versions antérieures :

De façon permanente dans les options [Ctr+Maj+O]

De façon ponctuelle en lançant la boîte de dialogue ci-dessous [Ctrl+Maj+Y]

Si le champ « Caractère à colorier est vide », la couleur choisie s'applique à toute la formule,

Exemple : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

Si vous saisissez une chaîne de caractères deux cas de figures :

1) La chaîne ne contient pas #, tous les caractères sont affectés

Exemple avec B : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$,

Avec AB : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

2) La chaîne contient #, les blocs séparés par # sont affectés

Exemple avec AB#C : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

ou avec AB#BC : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ ou encore AB# : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

Pour les formules encadrées, vous pouvez choisir des bordures en noir ou de la même couleur que les formules.

Dmaths :	Couleur de	s formules. 🛛 😣			
Rouge	Vert	Bleu			
0	0	0			
Clique	r pour lier le	s couleurs			
Choisir					
Cliquez po	our valider				
Formules	encadrées				
Texte de la même couleur					
Bordures de la même couleur					
Caractère(s) à colorier				

Vous pouvez également modifier la couleur d'une formule sélectionnée, d'une plage de texte, ou de tout le document en cliquant sur l'icône verte

Dans ce ces, sélectionner « Texte de la même couleur » permet d'obtenir un résultat comme cidessous.

 $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ Relation de Chasles. Autres propriétés : $\vec{u} + (-\vec{u}) = \vec{0}$ et $\overrightarrow{AB} = -\overrightarrow{BA}$.

Faire du calcul formel en utilisant Sympy ou Xcas

Retour accueil

Attention il peut y avoir des interférences entre les calculs effectués et les fonctions définies : par exemple vous pouvez obtenir une erreur avec tan(pi/3) si une fonction t est définie. Dans ce cas, il suffit de supprimer t.

Par défaut, le calcul formel est effectué en utilisant la bibliothèque Sympy de Python.

Vous pouvez également utiliser Xcas si le logiciel Xcas est installé sur votre ordinateur en (version 32 bits pour Windows).

Vous pouvez télécharger Xcas ici : https://www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html

Trois raccourcis clavier sont utilisés :

- <u>Alt+C</u> (Ctrl+F10 sous Mac) permet de faire un calcul simple (bouton « Calculer »),
- Alt+V (Ctrl+R sous Mac) permet de répéter le dernier type de calcul effectué,
- <u>Alt+X</u> (Ctrl+X sous Mac) lance la boîte de dialogue principale.
- <u>Alt+Z</u> permet de répéter plusieurs fois le même calcul dans un tableau.

Un mécanisme de <u>contrôle parental</u> permet d'en verrouiller l'usage.

Dmaths : effectuer un	calcul formel. Alt+V po	ur répéter le même calcul	8
Poser Calculer Simplifier Développer	Deri <u>v</u> er Intégrer Calcul détaillé S <u>o</u> mme	Décimal Approximation à 10^-n près Notation scientifique Fraction	Décomposer FP Est premier Diviseurs PGCD
<u>Factoriser</u> Factoriser dans C Forme canonigue <u>E</u> lements simples El. simples dans C	<u>R</u> ésoudre Résoudre dans C Système Numériquement x [-5;5]	Binomiale Normale Exponentielle ○ = ○ ≤ ○ inv	PPCM Div. euclidienne Algo. Euclide Coeff. Bézout Bé <u>z</u> out
Développ. <u>l</u> imité L <u>i</u> mite ✓ <u>1</u> /i->-i □ x^ <u>3</u> +x	Variables : C=[[1,2],[7 Ne pas utiliser les	x,8]] s variables mémorisées npy Version Sympy	Libérer la mémoire Supprimer variable Annuler

Pour affecter une variable, il suffit de l'écrire :

Source	Raccourci	Résultat	Source	Raccourci	Résultat
a=1/4	F10/F8	$a = \frac{1}{4}$	g(x)=sin(x)	F10/F8	$g(x) = \sin(x)$
b=7/10	F10/F8	$b = \frac{7}{10}$	M=1;2;;3;4	Ctrl+Maj+M	$\mathbf{M} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
$f(x)=x^2-5x$	F10/F8	$f(x) = x^2 - 5x$	I=0;2;x^2	Ctrl+Maj+I	$I = \int_{0}^{2} x^{2} dx$

Pour calculer, utiliser Alt+C (Ctrl+F10 sous Mac). Quelques exemples :

Source	Résultat	Source	Résultat	Source	Résultat
1/2+1/3	$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$	f'(x)	f'(x)=2x-5	M^2	$\mathbf{M}^2 = \begin{pmatrix} 7 & 10\\ 15 & 22 \end{pmatrix}$
3a+4b	$3a+4b=\frac{71}{20}$	f'(1)	f '(1)=-3	3M	$3 \mathbf{M} = \begin{pmatrix} 3 & 6 \\ 9 & 12 \end{pmatrix}$
f(3)	f(3) = -6	I	$I = \frac{8}{3}$	M^-1	$\mathbf{M}^{-1} = \begin{pmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$
f(x)+g(x)	$f(x)+g(x)=x^2-$	$5x + \sin(x)$	f'(x)+g'(x)		

Source	Commandes	Résultat
f(x)	Factoriser + Forme Canonique	$f(x) = x(x-5) = \left(x - \frac{5}{2}\right)^2 - \frac{25}{4}$
x^3+2x	Factoriser + Factoriser dans C	$x^{3}+2x=x(x^{2}+2)=x(x+i\sqrt{2})(x-i\sqrt{2})$
(x+3)^2	Développer	$(x+3)^2 = x^2 + 6x + 9$
${x^2+x+1}/{x^2+x+1}$	Développer	$\frac{x^2 + x + 1}{x^2} = \frac{x^2}{x^2} + \frac{x}{x^2} + \frac{1}{x^2}$
{x+1}	(pour scinder une fraction)	x+1 x+1 x+1 x+1
$a^m}{a^n}$	Simplifier	$a^m a^n = a^{(m+n)}$
a^m*a^n	- <u>r</u> -	$a^m \times a^n = a^{(m+n)}$
1/(x²-1)	Éléments simples	$\frac{1}{x^2 - 1} = \frac{\frac{1}{2}}{x - 1} - \frac{\frac{1}{2}}{x + 1}$
1/(x ² +4)	Éléments simples dans C	$\frac{1}{x^2+4} = \frac{\frac{i}{4}}{x+2i} + \frac{\frac{1}{4i}}{x-2i}$
sinx	Développement limité	$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)$
cosx;3	Développement limité à l'ordre 3	$\cos x = 1 - \frac{x^2}{2} + o(x^3)$
e^x;1;2	Développement limité en 1 à l'ordre 3	$e^{x}=e+e(x-1)+e\frac{(x-1)^{2}}{2}+o((x-1)^{2})$
1/{e^x+1};x;0;4	Développement limité	$\frac{1}{e^{x}+1} = \frac{1}{2} - \frac{x}{4} + \frac{x^{3}}{48} + o(x^{4})$
$m(x)=tan\{x^2\}$	F10/F8	$m(x) = \tan x^2$
m(x);x;0;3	Développement limité	$m(x) = x^2 + o(x^3)$
+inf;e^x/x	Limite	$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$
-inf;xe^x	Limite	$\lim_{x \to -\infty} x e^x = 0$
0;(1-cosx)/x^2	Limite	$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$
0^+;1/x	Limite	$\lim_{x \to 0^+} \frac{1}{x} = +\infty$
0#x<0;1/x	Limite	$\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$
t;0;sint/t	Limite	$\lim_{t \to 0} \frac{\sin t}{t} = 1$

Utiliser toutes les fonctions par Alt+X (Crtl+X sous Mac) (*f* et *g* définies page précédente) : Retour accueil

Source	Commandes	Résultat	
pi;f(x)	Limite avec $f(x) = x + \sin(x)$	$\lim_{x \to \pi} f(x) = \pi$	
x ³ -2x^2	Dériver + Simplifier	$(x^3-2x^2)'=3x^2-2\times 2x=3x^2-4x$	
f(x)	Dériver	(f(x))'=2x-5	
f(x)	Intégrer	$\int f(x) dx = \frac{x^3}{3} - \frac{5x^2}{2}$	
(x ³ -2x^2+7x)	Intégrer	$\int (x^3 - 2x^2 + 7x) dx = \frac{x^4}{4} - \frac{2x^3}{3} + \frac{7x^2}{2}$	
1/{x(x+1)}	Intégrer	$\int \frac{1}{x(x+1)} dx = \ln x - \ln x+1 $	
0;3;f(x)	Intégrer	$\int_{0}^{3} f(x) dx = -\frac{27}{2}$	
0;3;f(x)	Intégrer + Calcul détaillé	$\int_{0}^{3} f(x) dx = \left[\frac{x^{3}}{3} - \frac{5x^{2}}{2}\right]_{0}^{3} = -\frac{27}{2}$	
0;pi/2;g(x)	Intégrer + Calcul détaillé	$\int_{0}^{\frac{\pi}{2}} g(x) dx = [-\cos(x)]_{0}^{\frac{\pi}{2}} = 1$	
0;inf;e^{-x^2}	Intégrer $\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$		
0;2;e^{-x^2}	Intégrer + Approximation 5 déc.	$\int_{0}^{2} e^{-x^{2}} dx \approx 0,88208$	
0;10;k	Somme	$\sum_{0}^{10} k = 55$	
0;n;k	Somme + Factoriser	$\sum_{0}^{n} k = \frac{(n+1)^{2} - n - 1}{2} = \frac{n(n+1)}{2}$	
1;inf;1/k^2	Somme	$\sum_{1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$	
1;inf;1/(k^2+2)	Somme + Décimale sur 8	$\sum_{1}^{\infty} \frac{1}{k^2 + 2} \approx 0,8610281$	
f(x)=0	Résoudre	f(x)=0 S=[0;5]	
x^2+8=0	Résoudre dans C	$x^{2}+8=0$ S= $\left[-\sqrt{2}\times 2i;\sqrt{2}\times 2i\right]$	
x^2-5=0	Résoudre numériquement dans [0;5] avec 5 chiffres significatifs	$x^2 - 5 = 0$ S \approx [2,2361] à 10 ⁻⁴ près	
x+y=1;;x-2y=0	Résoudre + Système Inconnues : x;y	$\begin{cases} x+y=1\\ x-2y=0 \end{cases} S = \left\{ \left(\frac{2}{3};\frac{1}{3}\right) \right\}$	
x+y=1;;x+y=0	Idem	$\begin{cases} x+y=1\\ x+y=0 \end{cases} S = \emptyset$	

Source	Commandes	Résultat	
x+y=1;;4x+4y=4	Idem	$\begin{cases} x+y=1\\ 4x+4y=4 \end{cases} S=[(-y+1;y)]$	
x^2+y^2=0	Résoudre dans C Inconnues : x;y	$x^{2}+y^{2}=0$ S=[(x;ix);(x;-ix)]	
x^2+y^2=0;;x+y- 4=0	Résoudre dans C + Système Inconnues : x;y	$\begin{cases} x^2 + y^2 = 0\\ x + y - 4 = 0 \end{cases}$ S=[(2+2i;2-2i);(2-2i;2+2i)]	
x+y+z=0;;x- y-2=0	Résoudre + Système Inconnues : x;y;z	$\begin{cases} x+y+z=0\\ x-y-2=0 \end{cases} S = \left\{ \left(-\frac{1}{2}z+1; -\frac{1}{2}z-1; z\right) \right\}$	
61/8	Décimal	$\frac{61}{8} = 7,625$	
pi	Décimal avec 6 chiffres	π≈3,14159	
0,1225	Fraction	$0,1225 = \frac{49}{400}$	
582	Décomposer	582=2×3×97	
583	Est premier	583 faux	
583	Diviseurs	583 [1;11;53;583]	
582;584	PGCD	PGCD(582;584)=2	
52;64	РРСМ	PPCM(52;64)=832	
126/44	Division euclidienne	126=44×2+38	
126;44	Bezout	Xcas: 126;44 $[u=7; v=-20; d=2]$ Sympy: S= $[(22k+7; -63k-20)]$	
126/44	Euclide + Coeff Bézout	$126=44\times 2+38 38=a-2b$ $44=38\times 1+6 6=-a+3b$ $38=6\times 6+2 2=7a-20b$ $6=2\times 3+0$	
$f(x) = \tan(x)$	Alt+C (Ctrl+F10 sous Mac)	$f'(x) = \tan(x)^2 + 1$	
arctan(1)	Alt+C (Ctrl+F10 sous Mac)	$\arctan(1) = \frac{1}{4}\pi = \frac{\pi}{4}$	
1/(x^2+1)	Integrer	$\int \frac{1}{x^2 + 1} \mathrm{d} x = \arctan(x)$	
1/{sqrt{1-x^2}}	Integrer	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x)$	
1;+inf;1/x^2	Integrer	$\int_{1}^{+\infty} \frac{1}{x^2} \mathrm{d}x = 1$	
10;4	Binomiale avec $n=10$ et $k=4$ en cochant =	$\binom{10}{4} = 210$	

Source	Commandes	Résultat	
4;0,5	Idem	$\frac{1}{16} \frac{1}{4} \frac{3}{8} \frac{1}{4} \frac{1}{16}$	
4;0,5	En cochant Approximation 3 décimales	0,063 0,25 0,375 0,25 0,063	
10;0,4;3	Binomiale avec $n=10$, $p=0,4$ et $k=3$ en cochant =	p(X=3): 0,214990848	
10;0,4;3	en cochant ≤	p(X≤3)≈0,3822806016	
	avec un arrondi à 4 chiffres	<i>p</i> (X≤3)≈0,3823	
10;0,4;3;6	avec notation scientifique	$p(3 \le X \le 6) \approx 7,779 \times 10^{-1}$	
10;0,4;0,9	trouver <i>p</i> tel que $p(X \ge p) \ge 0,9$ en cochant inv	<i>p</i> =6	
0,2	Normale centrée réduite fonction densité <i>f</i> en cochant =	f (0,2)≈0,391042693975	
0,2	en cochant ≤	$p(X \le 0,2) \approx 0,579259709439$	
150;4;146	avec $\mu = 150$ et $\sigma = 4$	$p(X \le 146) \approx 0,1587$	
150;4;145;156		$p(145 \le X \le 156) \approx 0.8275$	
0,9	trouver <i>c</i> tel que $p(X \le c) = 0,9$ en cochant inv	<i>c</i> ≈1,282	
150;4;0,9		<i>c</i> ≈ 155,1	
0,5;0,8	Exponentielle avec $\lambda = 0,5$ densité <i>f</i> en cochant =	f (0,8)≈0,335160023018	
0,5;4	en cochant ≤	p(X≤4)≈0,8647	
0,5;3;10^99		<i>p</i> (X≥3)≈0,2231	
0,5;0,9	<i>h</i> tel que $p(0 \le X \le h) = 0,9$ en cochant inv	<i>h</i> ≈4,605	

Retour accueil

D'autres exemples :

Source	Raccourci	Résultat
(x^3-x^2)'	Alt+C ou Ctrl+F10	$(x^3 - x^2)' = 3x^2 - 2x$
Pour une primitive f(x)=x+sinx F(x)=f(x)	F10 Integrer	$f(x) = x + \sin x$ F(x)= $\int f(x) dx = \frac{x^2}{2} - \cos(x)$
F'(x)	Alt+C ou Ctrl+F10	$F'(x) = x + \sin(x)$

Source	Raccourci	Résultat	
$g(x) = xe^{x}$	F10	$g(x) = x e^x$	
G(x)=g(x)	Integrer	$G(x) = \int g(x) dx = (x-1)e^{x}$	
a=3	F10	a=3	
a^2-a	Factoriser	$a^2 - a = 6$	
Sans utiliser varia	bles mémorisées	$a^2-a=a(a-1)$	
	Ctrl+Alt+I		
3,89	puis Alt+C ou Ctrl+F10	[3,89]=3	
	Ctrl+Maj+M	(0,2 0,5)	
A-0,2;0,5;;0,6;0,5	ou Alt+F5	$(0,8 \ 0,5)$	
det(A)	Alt+C (Ctrl+F10)	det(A)=-0,3	
C=1:2::3:4	Ctrl+Mai+D	$C = \begin{vmatrix} 1 & 2 \\ - & - \end{vmatrix}$	
C C	Alt+C (Ctrl+F10)	3 4	
	, ,	C=-2	
А	Fraction	$A = \begin{pmatrix} \frac{1}{5} & \frac{1}{2} \\ \frac{4}{5} & \frac{1}{2} \end{pmatrix}$	
A^10	Alt+C ou Ctrl+F10	$A^{10} = \begin{pmatrix} 0,3846190184 & 0,3846131135 \\ 0,6153809816 & 0,6153868865 \end{pmatrix}$	
A^10	Décimal Approximation 3	$\mathbf{A}^{10} \approx \begin{pmatrix} 0,385 & 0,385 \\ 0,615 & 0,615 \end{pmatrix}$	
B=A^-1	F10		
B inverse de A	Alt+C	$B = A^{-1} B = \begin{pmatrix} -1,66666666667 & 1,66666666667 \\ 2,666666666667 & -0,666666666667 \\ -0,66666666666667 \\ -0,66666666666666667 \\ -0,666666666666666666666666666666666666$	
В	ou Ctrl+F10		
В	Fraction	$B = \begin{pmatrix} -\frac{5}{3} & \frac{5}{3} \\ \frac{8}{3} & -\frac{2}{3} \end{pmatrix}$	
A*B	Fraction	$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	
Uniquement Xcas	F10	Pour définir un opérateur $P(u:v):=u' \times v$	
P(u;v):=u'*v	Alt+C ou	$\mathbb{D}(\mathbf{v}^2 \cdot \mathbf{o}^x) = 2 \mathbf{v} \mathbf{o}^x$	
$P(x^2;e^x)$	Ctrl+F10	$\mathbf{r}(x; \mathbf{e}) - 2x\mathbf{e}$	

Avec les matrices :

on part de M=	$ \begin{vmatrix} 3 & -2 & 4 & -2 \\ 5 & 3 & -3 & -2 \\ 5 & -2 & 2 & -2 \\ 5 & -2 & -3 & 3 \end{vmatrix} . N = \begin{pmatrix} 1 & 0 \\ 2 & 2 \\ -1 & -1 \end{pmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
On tape la fonc	tion puis ALT+C (CTRL+F10 pc	our Mac). Exemp	le det(M)
Déterminant	det(M)=-150	Transposée	tran (M) = $ \begin{vmatrix} 3 & 5 & 5 \\ -2 & 3 & -2 \\ 4 & -3 & 2 \\ -2 & -2 & -2 \end{vmatrix} $
Valeurs propres (Sympy seulement)	s valp(M)=3:1;-2:1;5:2	Vecteurs propres	$\operatorname{vecp}(\mathbf{M}) = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$
Diagonalisable	isdg(M)=True	Échelonnée	$\operatorname{scal}(\mathbf{N}) = \begin{pmatrix} 1 & 0 & 1 & 3 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
Matrice de passage	$pass(\mathbf{M}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$	Matrice diagonale	diag(M) = $\begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}$
Réduite de Gauss	$gaus(\mathbf{N}) = \begin{pmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$	Noyau	kern(N) = $\begin{pmatrix} -1 & -3 \\ -\frac{2}{3} & -\frac{1}{3} \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$
Image	$\operatorname{imag}(\mathbf{N}) = \begin{pmatrix} 1 & 0\\ 2 & 3\\ -1 & -3 \end{pmatrix}$	Matrice unité	unit (3) = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Matrice nulle	$\operatorname{zeros}(3) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	Matrice Un	ones (3; 2) = $\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$
Matrice diagonale 1 Resolution	zeros(3;3) pour Xcas diag1(2;3) $I(2;3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$		$res(\mathbf{M}) = [\mathbf{\emptyset}]$
linéaire	$\operatorname{res}(\mathbf{N}) = \left \left 3 - x; \frac{1}{3} - \frac{2x}{3}; x \right \right $		(/ ()
Opérations élémentaires	La syntaxe est "Li=Lj", Li=Li*k", "Li=Li+Lj*k", "Ci=Cj", "Ci=Ci*k", "Ci=Ci+Cj*k"	opel(M;L2=I	$ \begin{array}{c} 5 & 3 & -3 & -2 \\ 3 & -2 & 4 & -2 \\ 5 & -2 & 2 & -2 \\ 5 & -2 & -3 & 3 \end{array} $

5 -2 -3 3 A noter que vous pouvez, avec Sympy, enregistrer le résultat dans une variable :

Avec F10 : R=imag(N) donnera R = $\begin{pmatrix} 1 & 0 \\ 2 & 3 \\ -1 & -3 \end{pmatrix}$

On peut ainsi utiliser une succession d'opérations élémentaires :

$$N = \begin{pmatrix} 1 & 0 & 1 & 3 \\ 2 & 3 & 4 & 7 \\ -1 & -3 & -3 & -4 \end{pmatrix}$$

$$A = opel(N;L2=L2+L1*-2) \text{ puis F10}$$

$$B = opel(A;L3=L3+L1*1) \text{ puis F10}$$

$$C = opel(B;L3=L3+L2*1) \text{ puis F10}$$

$$C = \begin{pmatrix} 1 & 0 & 1 & 3 \\ 0 & 3 & 2 & 1 \\ -1 & -3 & -3 & -4 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 0 & 1 & 3 \\ 0 & 3 & 2 & 1 \\ 0 & -3 & -2 & -1 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 0 & 1 & 3 \\ 0 & 3 & 2 & 1 \\ 0 & -3 & -2 & -1 \end{pmatrix}$$

Effectuer successivement plusieurs calculs identiques dans un tableau

Exemple : Obtenir les formes factorisées de plusieurs expressions.

Étape 1

Créer un tableau avec les expressions à factoriser.

$x^2 - 1$	x^2-5x	$x^{2}+2x+1$
$x^{3}-1$	$x^4 - 1$	$x^{2}+x-1$

Étape 2

a) Factoriser la première expression : Alt+X (Ctrl+F10 sous Mac) puis factoriser.

b) Cliquer Alt+Z : le curseur visible se déplace dans le tableau et les expressions sont factorisées.

$x^2 - 1 = (x - 1)(x + 1)$	$x^2 - 5x = x(x - 5)$	$x^{2}+2x+1=(x+1)^{2}$
$x^{3}-1=(x-1)(x^{2}+x+1)$	$x^4 - 1 = (x - 1)(x + 1)(x^2 + 1)$	$x^{2} + x - 1 = \left(x + \frac{-\sqrt{5} + 1}{2}\right) \left(x + \frac{\sqrt{5} + 1}{2}\right)$

Contrôle parental :

L'utilisation du calcul parental peut être bloquée en utilisant un code à 4 chiffres.

- Utiliser le raccourci clavier Ctrl+Alt+P

ou

- lancer la boîte de dialogue des options Ctrl+Maj+O/Alt+F8.

Omaths : code parental				
Dé/Bloque	r le calcul formel	ou modifier le c	ode parental	
Codo	Entr	er votre code		
	Bloquer	Modifier	Annuler	

Elles sont accessibles également dans le traitement de textes Writer. Cela permet d'utiliser des fonctions avec condition.

```
Créer une nouvelle fonction utilisant Sympy

def F(x):

if x >= 0:

return 2*x

else:

return 0
```

```
On obtient avec Alt+C (Ctrl+F10) :

F(15)=30

F(-20)=0
```

Si F est une fonction perso avec condition et si a=12 alors f(a) plante On ne peut pas composer une fonction Cas avec une fonction perso.

<u>Utiliser une commande du Cas :</u> Des exemples

Selon le cas il faut consulter la documentation de sympy ou de Xcas. Tapez Alt+C (Ctrl+F10) sous Mac

Avec Sympy :

cas(prime(100))	prime(100)=541
cas(primepi(15))	primepi(15)=6
cas(expand((x+2)**3))	expand $((x+2)**3) = x^3 + 6x^2 + 12x + 8$
cas(x+3*x)	x+3*x=4x

Avec Xcas :

cas(isprime(26))	isprime(26) = false
cas(gcd(50,12))	gcd(50,12)=2
cas(simplifier(x+2x))	simplifier $(x+2x)=3x$

Les boîtes de dialogue « formule graphique »

Cliquez sur **F** et vous aurez la boite de dialogue Formule graphique2:

👕 Dmaths : écrire une	formule	\times
<u>V</u> alider la sélection → <u>A</u> nnuler	fraction racine limite mesure algébrique/angle vecteur intégrale/somme/produit produit scalaire/vectoriel/angle de vecteurs système matrice ou système binôme isotope	

De là vous pourrez appeler d'autres boîtes de dialogue.

Dans chaque boîte la case à cocher « Écrire le code seul » vous permettra d'écrire le code sans la formule.

Cliquez sur **F** et vous aurez la boîte de dialogue « FormuleGraphique »:

Dmaths : écrire une formule complexe		
Insérer: () {} [] [] []]] [$\alpha \cdot \Gamma \cdot$ [] []]] [fraction racine limite mesure algébrique/angle vecteur intégrale/somme/produit produit scalaire/vectoriel/angle de vecteurs système	← <u>V</u> alider la sélection
I II II II un blanc	matrice ou système binôme isotope	Terminer
() {} • × ✓ <u>π</u> ∞ Index <u>Exp</u>		Annuler

Les raccourcis en mode texte :

Fonction	Raccourci	Résultat
1 à 12	1	Ex 1
1L à 8L	31	Exercice 3
1p à 5p	1p	Exemple 1
k pi	kpi	$(+k\pi; k \in \mathbb{Z})$
2 <i>k</i> pi	2kpi, k2pi	+ 2 $kπ$; $k ∈ \mathbb{Z}$
Théorème de Pythagore	pyt	théorème de Pythagore
Théorème de Thalès	tha	théorème de Thalès
Réciproque du théorème de Pythagore	rpyt	réciproque du théorème de Pythagore
Réciproque du théorème de Thalès	rtha	réciproque du théorème de Thalès
Barycentre	b3	le barycentre de {(;) ; (;) ; (;)}
Repère orthogonal	rog	repère orthogonal
Repère orthonormal	ron	repère orthonormal
Si et seulement si (texte)	ssi	si et seulement si

On peut *éditer* ces « autotextes » par le menu Outils/<u>A</u>utotexte [Ctrl+F3], ou en cliquant sur l'icône correspondante de la barre d'instruments. Pour les *utiliser* : tapez le **raccourci** puis **F3**.

Majuscules accentuées, lettres liées, euro...

Raccourci	Résultat	Raccourci	Résultat	Raccourci	Résultat
é	É	à	À	ое	œ
è	È	ù	Ù	œ	œ + F3 ⇒Œ
Ç	Ç	€, eur	€	(lié cette fois-ci)	<mark>oe</mark> +F3+F3⇒Œ

Raccourcis pour le pré-codage (en mode texte) des formules

Fonction	Racc.	Résultat	+ F10 (ou F8)
nitalic (non italique)	ni	nitalic	ex: nitalic{A_3} \Rightarrow A ₃ et pas A ₃
italic	i	italic	Écris en italique
Barré	ba	overstrike{}	4 5
Surligné	ov	overline{}	45
Espace fine	esf	`	pour aérer
Suspension		dotslow	1 + 2 + + 8
Exposant moins	em	^{"-"}	$S^{("-")} \Rightarrow S^{(-)}$
Exposant plus	epl	^{"+"}	$S^{(++)} \Rightarrow S^{+}$
Formule du binôme	fb	left(binom{n}{k}right)`p^{k}`q^{n-k}	$\binom{n}{k} p^k q^{n-k}$

Fonction	Racc.	Résultat	+ F10 (ou F8)
Combinaisons <i>n k</i>	cnk	left(binom{n}{k}right)	$\begin{pmatrix} n \\ k \end{pmatrix}$
Logarithme de base <i>a</i>	lga	log_{a}(x)	$\log_a(x)$
Intersection famille d'ensembles	ife	$\{ \} \cap csub\{i=1\} csup\{n\}A_{i}$	$\mathop{\cap}\limits_{\mathrm{i=1}}^{n}\mathrm{A_{i}}$
Réunion famille d'ensembles	rfe	$\{\} \cup csub\{i=1\} csup\{n\}A_{i}\}$	$\bigcup_{i=1}^{n} A_{i}$
Repère en 2D ou 3D	r2d, r3d	r2d⇒\$\$ (nitalic{};widevec{},widevec{})	ex. $(\Omega; \vec{e}_1, \vec{e}_2, \vec{e}_3)$
Racine carrée de	rc	sqrt{}	$sqrt{3} \Rightarrow \sqrt{3}$
Exponentielle de	e, exp	e^{}	$e +F3+ 5 +F10 \Rightarrow e^{5}$

Raccourcis pour les lettres grecques

 $[g si \ll grande \gg lettre = majuscule] + [2 initiales du nom sans accent] + [v si forme variante] + F3$

Lettre	Raccourci	Résultat	Lettre	Raccourci	Résultat
Alpha	al	α	Oméga	om, gom	ω, Ω
Beta	be	β	Phi	ph, gph	φ, Φ
Delta	de, gde	δ, Δ	Pi	pi, gpi	π, Π
Epsilon	ер	ε	Psi	ps, gps	ψ, Ψ
Eta	et	η	Rhô	rh	ρ
Gamma	ga, gga	γ, Γ	Sigma	si, gsi	σ, Σ
Khi	kh	χ	Tau	ta	
Lambda	la, gla	λ, Λ	Théta	th, gth	θ, Θ
Mu	mu	μ	Xi	xi, gxi	ξ, Ξ
Nu	nu	ν	Zéta ou Dzéta	Z a (car ze⇒ℤ*) ou dz	

Raccourcis pour les ensembles

Noms d'ensembles : [Lettre du nom] + [m ou p *si* – ou +] + [e *si* étoile] + **F3**

Ensemble	Raccourci	Résultat	Fonction	Racc.	Résultat
Grand N	n, ne ; nn	$\mathbb{N}, \mathbb{N}^*, n \in \mathbb{N}$	Appartient à	ар	E
Grand Z	z, ze, zm, zme nz	$\mathbb{Z}, \mathbb{Z}^*, \mathbb{Z}^-, \mathbb{Z}^{-*}$ $n \in \mathbb{Z}$	N'appartient pas à	nap	∉
Grand D	d	ID	Est inclus dans	inc	С
Grand Q	q, qe, qp, qm, qpe, qme	$\mathbb{Q}, \mathbb{Q}^*, \mathbb{Q}^+, \mathbb{Q}^-, \mathbb{Q}^{+*}, \mathbb{Q}^{-*}$	N'est pas inclus dans	nin	Ø
Grand R	r, re, rp, rm, rpe, rme	\mathbb{R}, \mathbb{R}^* , \mathbb{R}^+ , \mathbb{R}^- , \mathbb{R}^{+*} , \mathbb{R}^{-*}	Intersection	int	\cap
Grand C	c, ce	\mathbb{C}, \mathbb{C}^*	Union	uni	U
Ens. vide	ev	Ø	Infini	inf, -inf	∞, −∞

Variables, fonctions, repères, suites...

Les noms de fonctions et de variables s'écrivent en italique (cf. règles de typographie)	•
Le faire en mode texte, donne une écriture cohérente avec celle de l'éditeur de formule	s.

Lettre	Raccourci	Résultat
Variables <i>a</i> , <i>b</i> , <i>x</i> , <i>y</i> , <i>t</i>	a, b, x, y, t ; t2, t3	$a, b, x, y, t; t^2, t^3$
<i>x</i> exposant 2 à 5, <i>n</i> , et avec <i>z</i>	x2, x3, x4, x5, xn ; z2	$x^2, x^3, x^4, x^5, x^n; z^2, z^3, z^4, z^5, z^n$
Fonctions <i>f</i> , <i>g</i> , <i>h</i> , <i>u</i> , <i>v</i> , <i>w</i>	f, g, h, u, v, w	f, g, h, u, v, w
<i>f</i> de <i>x</i> , etc.	fx, gx, hx, ux, vx, wx	f(x), g(x), h(x), u(x), v(x), w(x)
<i>x</i> de <i>t</i> , etc.	xt, yt, zt	x (t), y (t), z (t)
Dérivées d'ordre 1	f'x, g'x, h'x, u'x, v'x, w'x ; x't, y't, z't	f'(x), g'(x), h'(x), u'(x), v'(x), w'(x); x'(t), y'(t), z'(t)
Dérivées secondes	f"x, g"x, h"x, x"t, y"t, z"t	f '' (x), g'' (x), h'' (x), x'' (t), y'' (t), z'' (t)
Courbe C (indice f, g, h)	cc, cf, cg, ch	C, C_f, C_g, C_h
Ensemble de définition de <i>f</i> , <i>f</i> '	ef, efp	E_f , E_f
Flèches	fl, fo, fs	\rightarrow , \mid \rightarrow , \mapsto
Racine carrée de <i>nombre</i>	rc + F3 + nombre + F10	$\mathbf{rc} + \mathbf{F3} + 5 + \mathbf{F10} \Rightarrow \sqrt{5}$
Exponentielle de <i>nombre</i>	e + F3 + nombre + F10	$\mathbf{e} + \mathbf{F3} + 2 + \mathbf{F10} \Rightarrow \mathbf{e}^2$
D rond (dérivée partielle)	dr	ð
Valeur absolue, norme	va, no	,
Composée (rond)	rond	0
Repères nommés	oij, oijk	$(\mathbf{O};\vec{i},\vec{j}), (\mathbf{O};\vec{i},\vec{j},\vec{k})$
Repère à renommer (2 ou 3 vecteurs, par défaut $(O; \vec{u}, \vec{v})$)	ouv	$(\mathbf{O}; \vec{u}, \vec{v})$ ou $(\mathbf{O}; \vec{e_1}, \vec{e_2})$, $(\mathbf{O}; \vec{u}, \vec{v}, \vec{w})$
Suites (u_n) , (v_n) , (w_n) , (a_n) , (b_n) , (z_n) , (x_n) , (y_n)	sun, svn, swn, san, sbn, szn, sxn , syn	$(u_n), (v_n), (w_n), (a_n), (b_n), (z_n), (x_n), (y_n)$
Termes d'indice 0 à 5, ainsi que n , de (u_n) , (v_n) , (w_n) , (a_n) , (b_n) , (z_n) , (x_n) , (z_n) .	u0, u1 u5, un ; v0 vn ; w0 wn ; a0, a1, an, b0, b1, bn, z0, z1, x0, x1, y0, y1	$u_0, u_1 u_5, u_n; v_0, v_1 v_5, v_n; w_0 w_5, w_n; a_0, a_1, a_n; b_0, b_1, b_n; z_0, z_1; x_0, x_1; y_0, y_1$

Relations, opérations, logique, algorithmique, arithmétique ...

Raccourci	Résultat	Raccourci	Résultat	Raccourci	Résultat
-	_	dif , <> ; env	≠, ≠, ≈	pl	
*,/,:	X, ÷, ÷	ie,<,<= ; se,>,>=	\leq, \geq	ре	T
pv (prod. vectoriel)	\wedge	eq	\Leftrightarrow	qq, ex	ΕV
Ca, OU SQ (square)		im	⇒	=	=
rond	0	eq1 eq2	~;~	COM (congru modulo)	= mod()
af	<i>←</i>	1001b2	$\overline{1001}^2$	8752b10	8752 ¹⁰

Ces autotextes sont en général traduits automatiquement pour les transformations en formule:

- Pour avoir: $x \in \mathbb{C}$, taper x ap **F3** c **F3**, sélectionner puis **F10**.
- Pour avoir $3\alpha^2$, il suffit de taper 3al **F3** 2 **F10**.

Les macros bleues appelées par : () ou Ctrl+Maj+Z

Dmaths : Choisir	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1 1 1 1 1 1 1 1 1 1 1

MetentreParentheses ()	essai	(essai)	Maj+F9
MetentreAccoladesVariables	essai	\{essai\}	Alt+F9
MetenRacineBleue 🗸	25	nroot{}{25}	
MetentreCrochets []	essai	[essai]	Ctrl+Alt+F9
MetentreParenthesesVariables ()	essai	left({essai}right)	
MetentreCrochetsVariables	essai	left[{essai}right]	
MetenNorme II II	widevec u	widevec u puis avec F10	no + F3
		$\ \vec{u}\ $	
MetenValeurAbsolue	-1	-1 -1	va + F3
Encadre le texte 🔲		essai de cadre	
		essai de cadre	
Met en italique le caractère ou <u>la</u>	М	Le point <i>M</i>	Maj+F3
sélection précédant le curseur 📝	AB	AB	
sélection précédant le curseur / Surligne les caractères situés entre	AB x+iy	AB {overline{x+iy}}	
sélection précédant le curseur / Surligne les caractères situés entre les accolades bar	AB x+iy	AB {overline{ <i>x</i> +i <i>y</i> }}	
sélection précédant le curseur Surligne les caractères situés entre les accolades bar Surligne le caractère ou la sélection	AB x+iy A	AB {overline{x+iy}} $\overline{\overline{A}}$	Ctrl+Maj+F3
sélection précédant le curseur Surligne les caractères situés entre les accolades bar Surligne le caractère ou la sélection précédant le curseur.	AB x+iy A	AB {overline{ $x+iy$ }} \overline{A} \overline{A}	Ctrl+Maj+F3 deux fois
sélection précédant le curseur Surligne les caractères situés entre les accolades bar Surligne le caractère ou la sélection précédant le curseur. On peut combiner avec le raccourci clavier F10	AB x+iy A	AB {overline{ $x+iy$ }} \overline{A} \overline{A} \overline{A} \overline{A}	Ctrl+Maj+F3 deux fois Ctrl+Maj + E
sélection précédant le curseur Surligne les caractères situés entre les accolades bar Surligne le caractère ou la sélection précédant le curseur. On peut combiner avec le raccourci clavier F10	AB x+iy A	AB {overline{ $x+iy$ }} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A}	Ctrl+Maj+F3 deux fois Ctrl+Maj + E deux fois
sélection précédant le curseur Surligne les caractères situés entre les accolades bar Surligne le caractère ou la sélection précédant le curseur. On peut combiner avec le raccourci clavier F10 Met en partie entière	AB x+iy A x	AB {overline{ $x+iy$ }} \overline{A}	Ctrl+Maj+F3 deux fois Ctrl+Maj + E deux fois Ctrl+Alt+I
sélection précédant le curseur Surligne les caractères situés entre les accolades bar Surligne le caractère ou la sélection précédant le curseur. On peut combiner avec le raccourci clavier F10 Met en partie entière	AB x+iy A x	AB {overline { $x+iy$ }} \overline{A}	Ctrl+Maj+F3 deux fois Ctrl+Maj + E deux fois Ctrl+Alt+I puis F10
 sélection précédant le curseur Surligne les caractères situés entre les accolades bar Surligne le caractère ou la sélection précédant le curseur. On peut combiner avec le raccourci clavier F10 Met en partie entière On peut écrire un arc de cercle en 	AB x+iy A x	AB {overline {x+iy}} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} $\{lfloor{x}rfloor\}$ puis $\lfloor x \rfloor$ \widehat{AM}	Ctrl+Maj+F3 deux fois Ctrl+Maj + E deux fois Ctrl+Alt+I puis F10

Un exemple avec int+F3 et uni+F3 : $\overline{A} \cap \overline{B} = \overline{A \cup B}$ puis avec F10 $\overline{A} \cap \overline{B} = \overline{A \cup B}$

Tracer des courbes définies par une ou des fonctions ou par des points (plotteur)

Avec la macro repregraphique $\frac{1}{2}$, vous pouvez tracer une courbe d'équation y = f(x),

paramétrique ou polaire.

Vous avez un module plotteur et pouvez tracer une Spline Cubique d'interpolation ou une courbe de Bezier.

La boîte de	dialogue o	btenue e	st déclinée e	n deux v	ersions.	On pass	e de l	'une à	l'autre	en sur	volant
				17			,				

les boutons **Tracer** et **Diagr.** . On peut désormais construire deux types de courbes soit un

dessin Draw soit un diagramme Calc, avec éventuellement des légendes. Voyez plus bas. Ils sont éditables : essayez en double-cliquant dessus chacun d'eux.

Consultez l'annexe AnnexeListeFonctions

Dmaths : tracer des courbes	× Dmaths : tracer des courbes ×
Fonction f v S R x^2	P Fonction F S R x ²
Fenêtre de tracé En abscisse, un cm représente 1 unité(s), en ordonnée 1 unité(s)	ion
VarMin 0 VarMax 2	VarMin 0 VarMax 2 <u>n</u> V
Le repère Pas du tracé en cm 0,1 Marge horizontale 2 Marge verticale 2	Le repère Pas du tracé en cm 0,1
Afficher l'axe des abscisses Pas de graduation 1 + Numérotation en x Pas de la numérotation - +	Afficher légende Graduations par intervalle 1 Abscisses Pas de la numérotation Position Début
Abscisse mini Xmin Abscisse maxi Xmax Ordonnée de l'axe 0	Abscisse mini Xmin Abscisse maxi Xmax Ordonnée de l'axe 0
Afficher l'axe des ordonnées Pas de graduation 1 - + Numérotation Pas de la numérotation	Afficher légende Graduations par intervalle 1 Ordonnées Pas de la numérotation Position Début
Ordonnée mini Ymin Ordonnée maxi Ymax Abscisse de l'axe 0	Ordonnée mini Ymin Ordonnée maxi Ymax Abscisse de l'axe 0
Grille cm Axes cm Papier millimétré Grille graduation O Axe unités Papier 2 mm	Grille cm Axes cm Afficher le titre Grille graduation O Axe unités Titre du diagramme
Quadrillage plein Afficher le repère (O;i;j) Imensions automatiques	☐ Quadrillage plein
Tracer Diagr. Nou <u>v</u> elle Courbe C D Calculer Options Annuler	Tracer Diagr. Nou <u>v</u> elle Courbe C D Calculer Options Annuler

<u>Ce qu'il faut savoir :</u>

Consultez l'annexe <u>AnnexeListeFonctions</u>

0) La figure tracée est mémorisée dans le paramètre description, de sorte que si vous sélectionnez une courbe tracée avec Dmaths et lancer la macro traceur de courbe, la boîte de dialogue va s'afficher avec tous les paramètres de la courbe sélectionnée : sa modification est d'autant plus aisée. Voyez le premier exemple ci-dessous. Sélectionnez la courbe et cliquer sur 🛺

- 1) Pour la fonction **exponentielle**, écrire **exp**, pour **logarithme népérien**, **ln**, pour **le logarithme décimal**, **log10**, pour la **racine carrée**, **sqrt**.
- 2) Utilisez les mêmes notations que dans le tableur: * pour multiplier et / pour diviser. Par exemple $f(x) = 2x^2 + 1$

$$(x) = \frac{2x + 1}{x^2 + 1}$$
 s'écrira: $(2*x^2+2)/(x^2+1)$.

- 3) Pour **modifier** le graphique obtenu:
 - Sélectionnez-le en cliquant dessus,
 - Avec le bouton droit de la souris suivez: Groupe > Entrer
 - Faites les modifications (par exemple ajouter une légende)
 - Puis, en appuyant sur la touche majuscule, sélectionnez les objets un à un avec la souris et avec le bouton droit de la souris suivez: Groupe > Grouper
- 4) Utilisez le menu Options pour les couleurs etc...
- 5) Pour tracer une **droite parallèle à l'axe des ordonnées** utilisez son équation réduite comme expression: exemple x=2
- 6) Xmin et XMax donnent les abscisses minimale et maximale du repère. Par défaut, ce sont respectivement, la plus petite abscisse minimale et la plus grande maximale des fonctions saisies.
- 7) **Ymin et Ymax** donnent les ordonnées minimale et maximale du repère. Par défaut, ces valeurs sont calculées par le logiciel par la méthode de balayage.
- 8) Pour utiliser **la fonction Plotteur**, il suffit de cliquer sur le bouton P en haut à droite de la boîte de dialogue. On saisira ensuite Varmin=-1 et Varmax=3
- 9) Une **courbe paramétrique** se note sous la forme m(x);n(x). On saisit ensuite dans Varmin et Varmax les valeurs extrêmes du paramètre t.
- 10) Une **courbe polaire** se note r(x);P. On saisit ensuite dans Varmin et Varmax les valeurs extrêmes du paramètre.
- 11) On peut tracer jusqu'à neuf branches de courbes et on peut combiner courbes définies par une fonction, droites parallèles à l'axe des ordonnées et courbes définies par des points.
- 12) Le logiciel détermine, si besoin automatiquement, la fenêtre d'affichage.
- 13) Pour obtenir **un repère sans courbe** laissez la fenêtre de la fonction vide puis saisir au moins Xmin, Xmax, Ymin, Ymax.

Exemple 1: La courbe représentative de la fonction exponentielle et sa tangente au point d'abscisse 1 Xmin=-3; Xmax=3; Ymin=-1 et Ymax=10

Le paramètre description de la figure contient les paramètres de tracer : 1::1:0:1:1:1:0:0:1:1:1:Ymin:10:1:0,1:2:2:Xmin:Xmax:0:0:1:1:0:0:0:0:0:1:0:0::f:exp(x):-5:3:0::g:x +1:-1:3:8388736:0:0::1:0:0:0:1:15:10:15:12:10:25:40:0:O:i:j:0:0:4:Calibri:1: de sorte que si vous la sélectionner et lancer le traceur de courbe, la boîte de dialogue sera préremplie pour les deux fonctions exp et $x \rightarrow x+1$.

Exemple 2 : La courbe paramétrique $m(x)=2\cos(x)$ et $n(x)=\sin(x)$. VarMin=0; VarMax=6,5 Xmin=-3; Xmax=3 Ymin=-2 et Ymax=2. Option : grille ½ cm.

1

0 0

Exemple 4 : Module Plotteur: Une courbe qui passe par neuf points. A saisir dans la fenêtre: -4;-4;-3;0;-2;2;-1;3;1;0;3;-3;4;-2;5;0;6;6

Exemple 5 : Module Plotteur: Une courbe qui passe par quatre points avec des pentes données. A noter VarMin = 0 et VarMax = 3

Le pas du tracé a été fixé à 0,05

La tangente au point d'abscisse 2 a un pente égale à -1

Dmaths : Tracer des courbes 🛛 😣					
Points	X	f(x)	f'(x)		
1	0	0	0		
2	1	2	0		
3	2	0	-1		
4	3	0	0		
5					

Dmaths : tracer des courbes	×
Fonction Expression ou valeurs de x et de f(x)	
f S R 0;0;0;;1;2;0;;2;0;-1;;3;0;0	P
Afficher les coefficients du polynôme d'interpolation	on
Fenêtre de tracé	
En abscisse, un cm représente 1 unité(s), en ordonnée 1 unité(s)	
VarMin 0 VarMax 3	
Le repère	
Pas du tracé en cm 0,05 Marge horizontale 2 Marge verticale 2	
✓ Afficher l'axe des abscisses Pas de graduation	
✓ Numérotation en x Pas de la numérotation 1	
Abscisse mini Xmin Abscisse maxi Xmax Ordonnée de l'axe 0	
Afficher l'axe des ordonnées Pas de graduation 1	
✓ Numérotation en y Pas de la numérotation 1	
Ordonnée mini Ymin Ordonnée maxi Ymax Abscisse de l'axe 0	
O <u>G</u> rille cm	
☐ Grille grad <u>u</u> ation ○ Papier <u>2</u> mm ○ A <u>x</u> e unités	
☐ Quadrillage plein ☐ Afficher le repère (O;i;j) ☑ Dimensions automatiques	
Tracer Nouvelle Courbe Calculer Options Annuler	

Exemple 6 : Le tracé d'une courbe de Bezier

Le coefficient du point de contrôle d'abscisse 6 a été porté à 2 pour que la courbe soit plus lisse.

A vous de vous exercer !

Retour accueil

Exemple 7 : Le tracé d'une courbes définie par intervalles

La boîte de dialogue est préremplie.

On obtient le deuxième intervalle en cliquant sur "Nouvelle courbe"

Fonction Expression ou valeurs de x et de f(x) g S R 1/x	Fonction Expression ou valeurs de x et de f(x) g S R x^2-9 x^2-9
Fenêtre de tracé En abscisse, un cm représente 1 unité(s), en or	Fenêtre de tracé En abscisse, un cm représente 1 unité(s), en or
VarMin 0 VarMax 2	VarMin 2 VarMax 5

On ajuste VarMax à 5 au lieu de 7 et Ymax à 10 pour obtenir la courbe :

Module statistiques et diagrammes en boîtes

Cliquez sur l'icône DiagBox:	HEH	. Vous aurez la boîte de dialogue suivante:
------------------------------	-----	---

Dmaths : Statistiques	8
Série définie par : Adresse du classeur Feuille n ^e 1 Plage des données Plage des résultats C1:D16 Sélection	Sauvegarder <u>l</u> a série Calc <u>u</u> ler Programme Arrondi à 3 C <u>h</u> iffres
Série définie par : Termes de la série : <u>S</u> érie avec coefficients	
Min Q1 Me Q3 Max <u>M</u> oyenne	Ecart-type
□ Afficher la moyenne □ Afficher les déciles [m-xe,m+xe] x= 2 □ Afficher légende	<u>D</u> 9
<u>C</u> onstruire la figure Hauteur en unités 1	u diagramme <u>T</u> erminer

Vous pouvez travailler sur deux types de série (pondérée ou non) :

- 1) Série dont les termes sont affichés dans la boîte de dialogue. La sauvegarde des résultats se fait dans un nouveau classeur.
- 2) Série dans un classeur Calc enregistré. On sélectionne la plage des données en cliquant sur « Sélection ». La plage des résultats est automatiquement calculée.

Voici un exemple pour le c<u>as 1.</u>

Valeurs	Effectifs	Dmaths : Statistiques 🛛 🛛
2¶	3¶	Série définie par : Sauvegarder <u>l</u> a série
4¶	2¶	Adresse du classeur Calc <u>u</u> ler
6¶	5¶	Feuille n ^e Plage des données Plage des résultats C1:D16 Sélection Programme Arrondi à 3 Chiffres
8	1	Série définie par :
ur.		Termes de la série : Série avec coefficients 2;3;4;2;6;5;8;1 Min 2 Q1 2 Me 6 Q3 6 Max 8 Moyenne 4,727 Ecart-type 1,958 Min 2 Q1 2 Me 6 Q3 6 Max 8 Moyenne 4,727 Ecart-type 1,958 Min Afficher la moyenne Afficher les déciles [m-xe,m+xe] x= 2 D1 2 D9 6 Afficher légende Hauteur en unités 1 Nouveau diagramme Terminer

On complète le champ « Termes de la série », puis clique sur « Calculer ».

Voici un exemple pour le cas 2.

Les données figurent dans un classeur sauvegardé. Une plage de cellules (colonne A) est sélectionnée.

Sélectio	n »		« Calculer »
	А	В	Dmaths : Statistiques
1	CAC 40		Commenced as less that
2	5806	4895	Série définie par :
3	5309	4935	Adresse du classeur /home/dmaths/kDrive/Portefeuille.xlsx Calculer
4	4378	4600	
5	4572	5511	Feuille n° 1 Plage des données A2:A16 Plage des résultats C2:D17 Sélection
6	4695	5598	Arrondi à 3 C <u>h</u> iffres
7	4856	5609	
8	4839	5630	Serie derinie par :
9	4935	5706	Termes de la série : Série avec coefficients
10	4928	5988	
11	4947	6102	
12	5034	6169	
13	4729	6287	Min 4378 Q1 4729 Me 4935 Q3 5630 Max 5988 Moyenne 5090,133 Ecart-type 468,423
14		6257	
15		6385	Afficher la movenne Afficher les déciles [m-xe.m+xe] x= 2 D1 4572 D9 5806
16		6385	Afficher légende
17			Nouveau diagramme
			<u>C</u> onstruire la figure Hauteur en unites 1

Puis on clique sur « Nouveau diagramme », on sélectionne une plage de la colonne B, puis « Calculer ». Et enfin « Construire la figure ».

Tableaux de variations, de signes et de valeurs

Pour construire un tableau de variations ou de signes cliquer sur l'icône: 拱

Voici un exemple de tableau de variations:

Le calcul formel permet d'obtenir les tableaux de signes ou de variations à partir de l'expression de la fonction et de son intervalle de définition.

Pour construire un tableau de valeurs cliquer sur l'icône:

Le calcul formel permet d'obtenir les tableaux de valeurs à partir de l'expression de la fonction et de son intervalle de définition. Voici un exemple :

x	0	1	2	3	4	5	6	7	8	9	10
x^2	0	1	4	9	16	25	36	49	64	81	100

Construire une figure géométrique

Il suffit de lancer le module correspondant en cliquant sur l'icône **G** Comment déplacer un objet ?

Exemple 1

Pour obtenir la figure ci-dessus on construit successivement :

- les points *A*, *B*, *C*,
- le centre C_1 passant par A, B et C de centre O,
- le point *N* situé sur C_1 d'angle polaire -40°,
- le point M, le segment [MN],
- le point *P* intersection de C_1 et [*MN*],
- le segment [*MO*], le segment [*AO*] nommé et marqué *R*,
- puis j'ai déplacé les lettres *P* et R.

Exemple 2

Les cercles de centres respectifs *A* et *B* et de rayons respectifs 3 et 5, puis leur intersection.

Exemple 3

Pour cette figure, on construit successivement le repère, la courbe représentative de la fonction carré, le point O de coordonnées (0 ; 0) que l'on ne marque pas et le cercle de centre O de rayon 4 que l'on limite au repère.

Exemple 4

On insère sous forme d'objet Gdmath un rectangle ABCD, puis on déplace le rectangle de sorte que le point A ait pour coordonnées (0 ; 0).

On crée alors les points A, C, D -sans les marquer ni les placer- puis le triangle équilatéral indirect DCE et le segment [AE]. Pour finir on retire les points A, C et D.

Comment déplacer un objet ?

On souhaite déplacer le marquage du point *B*. L'objet groupé doit être ancré à la page ou au paragraphe.

Pour changer l'ancrage, on le sélectionne, puis on clique droite et suit le menu ancrage. On choisit alors "Au paragraphe"

On appuie sur la touche contrôle [Ctrl] et on sélectionne l'objet à déplacer.

On appuie sur la touche Alt [ALT] puis on déplace l'objet avec les touches de direction. On déselectionne avec la touche échappement [ESC]. On rétablit l'ancrage précédent.

Utiliser la galerie

Comment intégrer une image de la galerie ?

- 1) Cliquer sur le bouton Gallery de la barre de fonctions:
- 2) Choisir le thème 2Dmaths ou 3Dmaths,
- 3) Sélectionner votre image puis glisser-déposer dans votre document:

4) Pour agrandir l'image en gardant les proportions (homothétie), sélectionner l'image puis appuyer sur la touche majuscule et modifier l'image.

<u>Comment ajouter une image à la galerie ?</u>

- 1) Dessiner l'image,
- 2) Tout sélectionner puis cliquer droit et « Grouper »,
- 3) Resélectionner en maintenant le bouton de la souris enfoncé,
- 4) Lorsque le curseur devient un rectangle glisser-déposer.

Comment modifier un graphique

Vous pouvez utiliser soit le module texte, soit **le module dessin** (faire un copier-coller) **qui offre plus de possibilités** en particulier rotations, figures en 3D

Pour ajouter des éléments

(Les fonctions de dessin sont accessibles par la barre d'instruments à gauche)

- Faire ces éléments, et les mettre sur le graphique
- Il faut ensuite tout regrouper (pour pouvoir par exemple déplacer l'ensemble du dessin en bloc) ;
 Méthode :

Choisir dans les fonctions de dessin le bouton de sélection 📐 , et **encadrer avec cet outil la zone** contenant tous les éléments et le graphique, puis **bouton droit –> Groupe –> Grouper**.

(On peut aussi **sélectionner un à un** tous les éléments **en maintenant la touche Maj enfoncée** et en cliquant bouton gauche, mais ce n'est pas pratique s'il y a beaucoup d'éléments).

Pour modifier un des éléments du graphique

(épaisseur, style du trait, couleur, ...)

- **Sélectionner** le graphique.
- Bouton droit -> Groupe -> Dissocier.
- On peut alors **sélectionner un élément quelconque** et le modifier (y compris une zone de texte) ; on peut aussi rajouter des éléments.
- On **regroupe** tout comme pour l'ajout d'éléments

Variante :

- Bouton droit -> Groupe -> *Entrer*.
- On peut alors sélectionner un élément quelconque et le modifier
- Dès qu'on clique en dehors de la figure, cela regroupe (ou bien avec bouton droit -> Groupe -> Quitter)

Cela permet de faire des traits de même couleur et de styles différents, c'est intéressant lorsqu'on photocopie en noir et blanc.

Exemple :

Ce graphique a été converti en fichier .png avant d'être inséré ici. Cela permettrait aussi de l'insérer dans une page Web en html, ou de convertir ce texte au format Word sans risque (les dessins vectoriels sont interprétés par le traitement de texte et ne passent pas toujours bien d'un logiciel à un autre ; même problème avec les formules de math). Si on prend la précaution de zoomer avant de convertir en image (puis de "dézoomer" après insertion), on a même un résultat très convenable à l'imprimante.

Remarque :

Comment faire k et l'image du graphique...

• Sous Linux :

Avec Ksnapshot, on fait une capture d'écran, enregistrée en .png

Ouvrir avec Kpaint ou Gimp, sélectionner la petite zone intéressante, copier – coller l'image dans un

nouveau fichier, enregistrer en .png (ce fichier image ne contient alors que la zone choisie). Retour dans OpenOffice : insérer l'image depuis le fichier.

Pour mettre la flèche dans le texte : on l'insère d'abord n'importe où, puis bouton droit sur l'image : « ancrage comme caractère », enfin couper – coller là où on veut.

Au lieu de Kpaint, on peut aussi utiliser le module traitement d'image de la StarOffice5.2 qui est très bon, (mais qui n'a pas été repris dans OpenOffice ni StarOffice60)

• Sous Mac OS X:

Avec l'application « Capture » située dans /Applications/Utilitaires faire une capture d'une sélection (**#**A). Elle est enregistrée en .tiff

L'ouvrir avec « Aperçu » et exporter en format .png

Le fichier .png ainsi obtenu peut être ouvert dans Gimp ou dans Graphic Converter et la suite se déroule comme sous Linux. Si l'on capture la sélection convenablement, le passage par un logiciel de traitement d'image peut ne pas être nécessaire. C'est le cas si la zone à sélectionner n'est pas trop petite.

• Sous Windows :

Avec la touche Impr-écran pour faire une copie d'écran dans le presse papier. Ensuite, il faut coller dans un logiciel de traitement d'image (Gimp, Paint, Photo-Editor ou StarOffice5.2), pour sélectionner la zone intéressante et en faire un fichier image qu'on insère ensuite dans OpenOffice. Il est préférable d'enregistrer les images en png : la compression et la qualité sont meilleures qu'en gif. Si on est en noir et blanc, on peut enregistrer en 1 bit (2 couleurs). Ainsi le fichier image est de taille réduite (intéressant pour mettre sur le Web).

Proposition de Michel Brissaud

Annexe liste des fonctions

Retour accueil

Cette annexe donne la liste des fonctions que vous pouvez utiliser dans le plotteur. Pour faciliter l'utilisation, certaines fonctions peuvent s'écrire de différentes façons.

Nom	rôle					
*, cdot, times	multiplier					
/, over, div	diviser					
e^ exp	exponentielle					
٨	puissance					
ln, log	logarithme néperien					
log10, log_10, logten	logarithme base 10					
Log2, log_2, logtwo	logarithme base 2					
Sqrt, sqr	Racine carrée					
%pi, pi, e	Les constantes "pi" et "e"					
Sin, cos, (tan, tg)	Sinus, cosinus, tangente					
cot, cotan, cotg	cotangente					
sec	Sécante					
csc, cosec	Cosécante					
(a,ar,arc) + fonction trigonométrique	Fonction inverse. Par exemple : asin=arsin=arcsin = fonction inverse du sinus					
fonction trigonométrique +h	Fonctions hyperboliques. Ex : acosh= arccosinus hyperbolique					
fact, factorial	Factoriel					
Random, rand, rnd	Valeur aléatoire entre 0 and 1					
abs	Valeur absolue					
sign	Signe de la valeur : -1, 0 or 1					
int	Arrondi à l'entier inférieur					
frac	frac(x)=x-int(x)					
min	Minimum d'une liste de valeurs. Cette liste est de taille variable et sans limite : min(2,1,3)=1					
max	Maximum d'une liste de valeurs. Cette liste est de taille variable et sans limite : max(2,1,3)=3					

Fonctions Mathématiques

Fonctions Statistiques

Nom	rôle
betadist(x; α ; β ; a; b; <i>cumulé</i>)	Loi Beta
betainv(p; α; β; <i>a</i> ; <i>b</i>)	Inverse de la distribution beta
chidist(x; k)	Queue de droite de la distribution du χ^2 cumulé
chisqdist(x; k; <i>cumulaté</i>)	Queue de gauche de la densité ou répartition du χ^2
chiinv(p; k)	Fonction inverse de CHIDIST
chisqinv(p; k)	Fonction inverse de CHISQDIST
confidence(α ; σ ; taille)	Intervalle de confiance d'une distribution normal
expondist(x; λ; <i>cumulé</i>)	Loi exponentielle
fdist(x; r1; r2)	Loi F
finv(p; r1; r2)	inverse de la loi F
fisher(r)	Transformation de Fisher
fisherinv(z)	inverse de la transformation de FISHER
gamma(x)	La fonction GAMMA
gammaln(x)	Logarithme naturel de la fonction gamma
gammadist(x; α; β; <i>cumulé</i>)	Distribution gamma
gammainv(p; α ; β)	inverse de la distribution gamma
gauss(x)	distribution cumulative de la loi normale standard
lognormdist(x; μ; σ)	distribution lognormale cumulative
loginv(p; μ; σ)	inverse de la distribution lognormale
normsdist(x)	distribution cumulative normale standard
normsinv(p)	Inverse de la distribution cumulative normale standard
normdist(x; μ; σ; <i>cumulé</i>)	distribution cumulative de la loi normale
norminv(p; μ; σ)	inverse de la distribution cumulative de la loi normale
phi(x)	distribution de probabilité normale standard
tdist(x; r; mode)	distribution t
tinv(p; r)	inverse de la distribution t
weibull(x; k; λ ; <i>cumulé</i>)	distribution Weibull

Pour plus d'information sur ses fonction, vous pouvez lire la documentation en anglais d'Open office ici: <u>Calc statistical functions</u>

La version française mais pas toujours avec les même noms de fonction se trouve ici : <u>Calc fonctions statistiques</u>.

Fonctions financières

Nom	Rôle		
db(coût;valeur_résiduelle;durée;année; <i>mois</i>)	amortissement d'un actif pour une année donnée par la méthode de l'amortissement dégressif à taux double		
ddb(coût; valeur_résiduelle; durée; année; <i>factr</i>)	amortissement d'un actif pour une année donnée par la méthode de l'amortissement dégressif à taux double ou d'autres facteurs		
sln(coût; valeur_résiduelle; durée)	amortissement d'un actif pour une période unique suivant la méthode d'amortissement constant		
syd(coût; valeur_résiduelle; durée; année)	amortissement d'un actif pour une période donnée par la méthode de réduction du montant de l'amortissement d'une période à l'autre d'un montant constant		
vdb(coût; valeur_résiduelle; durée; début; fin; <i>factr; non_linéaire</i>)	Amortissement d'un actif pour une période donnée par la méthode de l'amortissement dégressif à taux variable		
cumipmt(taux; nb_periodes; val_actuelle; début; fin; type)	somme des intérêts payés sur un prêt dans des paiements périodiques spécifiés		
cumipmt_add(taux; nb_periodes; valeur_actuelle; début; fin; type)	somme des intérêts payés sur un prêt dans des paiements périodiques spécifiés		
cumprinc(taux; nb_periodes; valeur_actuelle; début; fin; type)	somme du capital repayé sur un prêt dans des paiements périodiques spécifiés		
cumprinc_add(taux; nb_periodes; valeur_actuelle; début; fin; type)	somme du capital repayé sur un prêt dans des paiements périodiques spécifiés		
<pre>fv(taux; nb_periodes; paiement; val_actuelle; type)</pre>	valeur future d'une somme initiale avec sur la base de paiements réguliers		
ipmt(taux; période; nb_periodes; val_actuelle; val_future; type)	Portion d'un prêt à taux fixe qui correspond au intérêts		
ispmt(taux; période; nb_periodes; principal)	Intérêts à payer sur un prêt à taux fixe		
<pre>nper(taux; paiement; val_actu; val_fut; type)</pre>	nombre de périodes de paiement dans une année.		
<pre>npv(taux_inf; paiement1; payment30)</pre>	valeur actuelle nette de paiements réguliers		
rate(nb_periodes; paiement; val_actu; val_fut; type; devine)	taux d'intérêts pour une annuité		
rri(nb_periodes ; val_actu; val_fut)	Taux d'intérêt/rentabilité d'un investissement		
duration(taux; val_actu; val_fut)	Durée requise pour atteindre la valeur future		
effective(taux; nb_fois)	taux effectif en fonction du taux nominal		
effect_add(taux; nb_fois)	taux effectif en fonction du taux nominal		
nominal(taux_eff; nb_fois)	taux nominal en fonction du taux effectif		
nominal_add(taux_eff; nb_fois)	taux nominal en fonction du taux effectif		

Pour plus d'information, vous pouvez aller sur la documentation en anglais OO : <u>Calc</u> <u>financial functions</u>.

Dmaths pour LibreOffice >= 7.6 ou OpenOffice >= 4.1 version 7.1

Copyright (C) 2006-2024 Didier DORANGE-PATTORET

38, chemin de l'Abbaye 74940 Annecy.

mail: ddorange@dmaths.org.

Ce programme est libre, vous pouvez le redistribuer et/ou le modifier selon les termes de la Licence Publique Générale GNU publiée par la Free Software Foundation (version 3 ou bien toute autre version ultérieure choisie par vous). Pour en savoir plus ouvrir un nouveau fichier texte, taper copie puis F3.

Ce programme est distribué car potentiellement utile, mais SANS AUCUNE GARANTIE, ni explicite ni implicite, y compris les garanties de commercialisation ou d'adaptation dans un but spécifique. Reportez-vous à la Licence Publique Générale GNU pour plus de détails. Pour en savoir plus taper garantie puis F3.

Vous devez avoir reçu une copie de la Licence Publique Générale GNU en même temps que ce programme ; si ce n'est pas le cas, écrivez à la Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, États-Unis.

La licence est consultable dans le fichier joint **licence.odt** ou sur <u>www.fsf.org</u>